US 2005/0005261 Al

respectively, of the Package Implementation. The Package
Instance also includes a pointer to the Package Implemen-
tation of which the Package Instance is an instance.

[0519] The Packages Implementation, Models Implemen-
tation, Constraint Implementations, and Attribution Imple-
mentations create a Packages Handler, a Models Handler, a
Constraints Handler, and an Other Attributes Handler of the
Package Impl Generator.

[0520] The Handler, Models Handler, Constraints Han-
dler, and Other Attributes Handler of the Package Impl
Generator are read by the Packages Descriptor, as indicated
by connector WW, the Models Descriptor, as indicated by
the connector WW, the Constraint Descriptors, as indicated
by the connector XX, and by the Other Attributes, as
indicated by the connector Y, respectively, for the Package
Descriptor.

[0521] FIG. 33 also shows Attribute Instances including
Packages, Models and Other Attributes.

[0522] In FIGS. 5-34, there are automatic conversions
from UML, such as text descriptions, to the descriptor
objects in the Meta-Implementation Layer of the Component
Integration Engine. Although not shown in the embodiment
of the component integration engine of the present invention
of FIGS. 5-34, there may be zero or more handlers to
convert various source data to the appropriate descriptor. For
each handler there exists a Serializer to convert from a
descriptor that that source data format. The user may also
directly create a descriptor without using a handler.

[0523] A component integration engine of the present
invention may be used to create connections between objects
dynamically at run-time instead of creating object connec-
tions at compile-time. Since object connections are not
created at compile time, each object must operate correctly
independently of the connections that might be established
later. This statement is equivalent to saying that code is more
reliable. Creating connections at run-time rather than com-
pile-time offers significantly more flexible functionality at
run-time. Using metadata to perform these connections
makes connections self-describing. Flexible functionality
that is easy to understand (due to its self-describing nature)
leads to lower maintenance costs.

[0524] Using metadata in at least some embodiments of
the component integration engine of the present invention to
perform connections between components prevents unex-
pected access from one component to another component.
This restriction on access reduces unexpected side effects
between components reducing the types of errors that can
occur and limiting the scope of an error if it should occur. In
fact, errors are unlikely to cross the metadata connection.
These restrictions significantly reduce testing and debug-

ging.

[0525] In some embodiments, the component integration
engine of the present invention may check security restric-
tions before performing connections between objects. This
allows security to be centralized in the component integra-
tion engine, meaning components need to perform little or
no additional security checks, while still providing security
throughout the entire application.

[0526] In some embodiments, the component integration
engine of the present invention may identify performance

Jan. 6, 2005

bottlenecks at run-time by logging performance character-
istics for each component or component connection. Com-
ponents can be dynamically reconfigured or replaced at
run-time to eliminate bottlenecks. Since the creation of
object connections can be performed at runtime and can be
performed through compiled metadata that is negligibly
slower than compiled code, smaller components can be
developed and connected at run-time. Smaller components
represent smaller units of functionality and smaller units of
data, which leads to a reduction in the proliferation of
models and increases the reusability of code (non-redundant
code). This propensity of the system to produce smaller units
of code, which do not require extensive inheritances, leads
to a reduction in development (which correspondingly leads
to a reduction in testing and debugging).

[0527] The component integration engine of the present
invention describes a software application in order to
dynamically create that software application without pro-
gramming is a new category of software. The only similar
software in existence is a system of metadata used to
describe relational data structures for storage and retrieval (a
database). Overcoming implementation difficulties and dis-
covering a high-performing, secure, scalable mechanism to
assemble components of any type to affect data of any type
in an effort to perform a software task of any type requires
several novel software patterns and requires the use of
compiled metadata.

[0528] In some embodiments, the component integration
engine of the present invention may include Hierarchical
Model View Controller using events based on metadata (an
HMVC 4.6.2 pattern). The model-view-controller pattern
has been redesigned to use a “model”—*model control-
ler”"—“view controller”—*“view” pattern each part of which
is allowed to be a hierarchy of objects. Communications
occur only between adjacent parts. Communications
between the model controller and view controller only occur
at the top-most level of the hierarchy, instead of the tradi-
tional MVC or HMVC patterns which allow communication
between any parts in the system and at any level. Adding this
restriction between the model and view controllers allows
greater distribution to occur by inserting a “forward”
between them (leading to the pattern of “model”—*“model
controller”—*“server-side ~ forward”—*“client-side for-
ward”—“view controller”—*“view”). Events define the val-
ues they carry using a definition. Upon initial registration of
an event listener, the metadata definitions are passed to the
listener followed by the current values. This innovation
allows listeners to more correctly respond to events by
adjusting to differences in the metadata, or using the meta-
data to more fully constrain values.

[0529] In another embodiment, the present invention pro-
vides a two-part graphical user interface design The first part
is the use of metadata as part of the events sent between the
model and view. The second part is the change in the
structure used to handle these events. The events sent
between the model and view relate to changes in values that
need to be displayed on the view or adjusted on the model.
Different events signify a request for an action to occur, a
failure occurring, a change in the display, a change in
selection, a change in cursor position, etc. In order to make
event handling and event registration easier, the wide variety
of different events have been consolidated into a single type
of event: an application event. In order to still support the

